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[1] Mesoscale eddies dominate oceanic kinetic energy at
sub-inertial frequencies. Their three-dimensional structure
has, however, remained obscure, hindering better
understanding of eddy dynamics. Here by applying the
composite analysis of satellite altimetry and Argo float
data to the globe, we show that despite remarkable regional
differences in amplitude, extent and polarity, etc., mesoscale
eddies have a universal structure in normalized stretched
coordinates. Horizontally, the associated pressure anomaly is
well described by a function of the normalized radial
distance from the eddy center R(rn) = (1–rn

2/2) �exp(–rn
2/2),

whereas vertically it is sinusoidal in a stretched coordinate
zs =

R z
0 (N/f )dz, where N and f are the buoyancy frequency

and the Coriolis parameter. Citation: Zhang, Z., Y. Zhang,
W. Wang, and R. X. Huang (2013), Universal structure of
mesoscale eddies in the ocean, Geophys. Res. Lett., 40, 3677–3681,
doi:10.1002/grl.50736.

1. Introduction
[2] Mesoscale eddies are often long-lived and deep-

reaching vortices with horizontal scales on the order of
100 km in midlatitudes [Chelton et al., 2011; Roemmich and
Gilson, 2001; Yang et al., 2013; Chaigneau et al., 2011]. As
a ubiquitous feature in the world oceans, they are approxi-
mately in geostrophic balance, strongly constrained by the
Earth’s rotation and ocean stratification, affecting motions
of larger and smaller scales [Farneti et al., 2010; Capet
et al., 2008], and effectively transporting various tracers
[Roemmich and Gilson, 2001]. Our understanding of the
structure of mesoscale eddies has been rather limited due
to the lack of observations. The satellite altimetry provides
nearly global maps of detailed signatures of eddies at the sur-
face [Chelton et al., 2011, 2007], but it offers no information
at subsurface. Shipboard observations give measurements
in the interior, but they are often very sparse and have
limited depth ranges [Johannessen et al., 1989; Ledwell et
al., 2008]. More recently, the composite analysis of altimet-
ric and in situ data was adopted in a few regional studies
[Roemmich and Gilson, 2001; Chaigneau et al., 2011; Liu et
al., 2012; Yang et al., 2013], showing strong heterogeneity of
eddy characteristics such as horizontal and vertical extents.
A systematic survey of eddy structure at the global scale
is still lacking, and many fundamental questions remain
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unresolved. For example, what indeed do mesoscale eddies
look like in three dimensions, and by what mechanisms are
their structures determined? These issues not only are inter-
esting in themselves but also pave the road for progress in
our understanding of eddy dynamics.

[3] In this study, we apply the composite analysis to the
globe (mostly in deep, open-ocean area due to difficulty
of Argo floats in shallow, continental regions), combining
surface signals of eddies detected by satellite altimetry with
global coverage of hydrographic profiles from Argo floats.
We will show that regional differences in the Earth’s rota-
tion (f) and ocean stratification (N) dominate the regional
variation of oceanic eddy structures. When seen in stretched
normalized coordinates, the pressure anomalies in asso-
ciation with mesoscale eddies have a universal structure
worldwide; both their horizontal and vertical components
can be described by simple analytical functions.

2. Data
[4] The altimetric data contain sea surface height (SSH)

and sea surface level anomaly (SLA) products provided
by Archiving, Validation, and Interpretation of Satellite
Oceanographic data (AVISO). It has a weekly format cov-
ering the period from October 1992 to January 2010 on a
0.25ı � 0.25ı longitude/latitude grid. The data from Argo
floats consist of about 600,000 temperature and salinity
(T/S) profiles in the upper 2000 m between years 1996 and
2010. Simple scaling of mesoscale flow fields yields a small
Rossby number, implying the dominance of the geostrophic
balance, so the structure of mesoscale eddies can be largely
described by the field of pressure readily calculated from T/S
profiles with the hydrostatic balance (see section A1).

3. Results
[5] Argo floats spend most of their drifting time at the

parking depth (about 1000 m depth), and at typically 10 day
intervals they quickly descend to 2000 m depth and then
rise to the surface while measuring temperature and salin-
ity. The distance between two neighboring profiles obtained
by the same float is about 10–50 km, relatively small com-
pared with scales of mesoscale eddies. Indeed, almost all
Argo floats observe remarkable mesoscale variations along
their trajectories. More interestingly, these variations seem
highly correlated at different depths. Let us take for exam-
ple that the float with the platform number 1900577 drifted
eastward for about 5.5 years along a semizonal path in the
Southern Ocean. The curves of standardized pressure sig-
nals (see section A2) at different depths fall on top of each
other (red, blue, green, and black curves in Figure 1). They
are also closely aligned with a curve for the standardized
surface pressure series (gray in Figure 1) constructed from
the altimetric data, indicating very good vertical correlations
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Figure 1. Standardized pressure series (psd) (see
section A2) at different depths following the Argo float with
the platform number 1900577. The standardized pressure
signals are plotted at 100 (red), 500 (blue), 1000 (green),
and 1500 m (black) depth. These curves are closely aligned
and also nearly overlap with the gray curve, the stan-
dardized surface pressure series, suggesting good vertical
correlations through the water column.

through the water column in the upper 2000 m. This turns out
to be a typical feature for most floats (70% give significantly
correlated pressure series), suggesting that the horizontal
structures of pressure anomalies are basically independent
of depth and leading to the anticipation that eddies’ horizon-
tal and vertical structure components are separable. In other
words, the pressure anomaly can be described by the product
of two separable functions, i.e., p0 = F1(x, y, t)F2(z).

[6] Mesoscale eddies were found on average axially sym-
metric [Chelton et al., 2011], so the field of pressure anomaly
related to each eddy can be conveniently described in cylin-
drical coordinates (r,z), where r is the radial distance from
the center of the eddy. The three-dimensional eddy struc-
ture is constructed in the following steps (see section A3).
(1) Identify an eddy at the ocean surface using Okubo-
Weiss method and determine its scale, R0, and strength, P0.
(2) Apply the composite analysis in a subdomain where
mesoscale eddies are assumed to have the same struc-
ture. Ideally with dense-enough float profiles, any eddy
detected at a given time can be grouped with a large
number of profiles in its proximity, altogether determin-
ing a field of pressure anomaly p0(r, z, t). The structure of
an eddy is more clearly depicted by the normalized pres-
sure anomaly, pn, resulted from normalizing p0 with P0 and
normalizing its radial coordinate with R0. However in real-
ity, there are only a limited number of float profiles at a
given time, and these profiles are probably well separated
in space. Therefore, we consider multiple eddies detected in
a relatively small area (yet big enough to contain enough
float profiles) so that all eddies, regardless of amplitude,
polarity, or scale, are assumed to share the same struc-
ture. Under this assumption, pressure anomalies, which vary
substantially among eddies with different P0 and R0, give the

same function pn when normalized with these two quantities.
We first match each eddy with the closest float profile
observed at the same time and normalize p0 with P0 and R0
to get the profile of pn at a particular normalized radial dis-
tance. Repeating this procedure for all available eddy and
float profile pairs in the subdomain, we finally determine the
field of pn.

[7] Applying these two steps to the globe, we have multi-
ple fields of pn describing eddy signals in different regions.
These fields share a common feature, as anticipated from
Figure 1; that is, the two variables, rn and z, are separable,
making it possible to investigate separately the radial and
vertical components of the structure:

pn(rn, z) = R(rn) � H(z), (1)

where R and H are respectively normalized functions of rn
and z. Profiles of R(rn) identified for different regions (thin
black curves in Figure 2) fall close to its average (thick gray
curve), indicating the existence of a universal radial struc-
ture of pressure anomaly, as suggested by Chelton et al.
[2011]. In their analysis, only the SSH field inside the core
of eddies was considered, which has a single sign and varies
with the radial distance in the form of a Gaussian function
(their Figure 15). Unlike Chelton et al. [2011], we examined
the pressure field within a much greater radial distance and
found that the normalized pressure anomaly has opposite
signs in and out of the core of eddies. Accordingly, the eddy
has a core of single-signed anomaly of potential vorticity,
surrounded by a ring of oppositely signed anomaly. Eleva-
tions of sea surface and isopycnal surfaces have the same
radial structure with the pressure anomaly; their integrals
over the entire range considered for an eddy tend to be zero,
so the mass conservation condition for an “isolated” vortex
is satisfied. Such a radial structure was observed in nature
[Robinson, 1983] and in laboratory experiments [Trieling
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Figure 2. The universal horizontal structure of pressure in
mesoscale eddies. Black curves show horizontal structures
with appropriate normalization and coordinate stretching
rn = r/R0 in different areas; the gray curve is their aver-
age, which is closely aligned with an analytical function�
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(red curve), showing the existence of
a universal horizontal structure.
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Figure 3. The common vertical structure of geostrophic eddies in four areas. (a) Vertical structures, H(z), resulting from
composite analysis in regions of the Gulf Stream (black), the Kuroshio Extension (blue), the Agulhas Current (red), and
the North Pacific Subtropical Countercurrent (green), showing large differences in the overall shape. (b) Vertical structures,
H(zs), in the stretched coordinate in those four regions, showing more or less similar shape of sine functions but with
different wavelengths. (c) The normalized vertical functions, Hn(zn), are overlapping with each other.

and van Heijst, 1998; Beckers et al., 2001]. It can also be
described in simple analytical form, as predicted by a theo-
retical model considering large-time asymptotics of potential
vorticity under effects of horizontal diffusion [Kloosterziel,
1990],

R(rn) =
�
1 – r2

n/2
�
� exp

�
–r2

n/2
�

. (2)

[8] In the vertical, profiles of H(z) seem to vary substan-
tially among different regions as shown by four examples
in Figure 3a, making it difficult to discern any similar
pattern out of them. However, in a stretched coordinate,
zs =

R z
0 (N/f)dz, as suggested by a theoretical study of eddies

within the quasi-geostrophic (QG) framework [Flierl, 1987];
they are, to the naked eye, similar in shape to sine functions,
albeit different in details such as wavelength (Figure 3b).
This choice of vertical coordinate was mathematically a con-
venient one in Flierl [1987]: it linearized the geostrophic
potential vorticity and transformed the complex operator on
geostrophic stream function to a three-dimensional Lapla-
cian with an extra term, which is relatively small in general.
In the present study, the application of such a coordinate, zs,
is essential for discovery of the universal vertical structure.
We fit H(zs) to a sine function plus a constant value,

H0 � sin(kzs + �0) + Have, (3)

and take parameters H0, k, �0, and Have as unknowns to
be determined. Amazingly, curves for those four exam-
ples, when normalized by the fitting results, Hn = (H(zs) –
Have)/H0, and plotted against a new coordinate, zn = kzs +
�0, collapse onto a single curve (Figure 3c). Repeating
these stretching and fitting procedures in all areas leads
to Figure 4, where all curves are closely aligned to their
average (thick gray curve), which overlaps with that of
the analytical function, sin(zn) (thick red curve). This ver-
tical sine structure, with only one zero-crossing in the
interior and vanishing derivative at the lower boundary, is
somewhat similar to the classical, free, first baroclinic mode
[Gill, 1982; Wunsch, 1997] but is meanwhile distinguished
by one important feature. Its phase, �0, is nonzero at the
surface and varies markedly among regions, presumably

resulting from differential surface dynamics. The classi-
cal, first, baroclinic mode, on the other hand, is one of
the normal modes arising from the QG equations that are
linearized about a mean state with an interior potential vor-
ticity gradient on a flat bottom but have no surface buoyancy
perturbations. This being said, it seems sensible to regard
the sine structure sin(zn) as a special kind of first baro-
clinic “mode” taking into account contributions of surface
buoyancy anomaly. The fact that the vertical structure as
shown in equation (3) is dominated by the barotropic and the
first baroclinic mode is consistent with the suggestion of an
observational study that the eddy kinetic energy in the ocean
primarily resides in the barotropic and first baroclinic modes
[Wunsch, 1997].
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Figure 4. The universal vertical structure of mesoscale
eddies. Black curves show the normalized vertical function,
Hn(zn) for all areas; the gray curve depicts their average,
which is closely aligned with the analytical function sin(zn)
(red curve), showing the existence of a universal vertical
structure.
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4. Conclusion
[9] Based on available altimetric and profiling float data,

our composite analysis of the three-dimensional eddy struc-
ture reveals an important common feature of mesoscale
eddies in the world oceans. They have horizontal and ver-
tical structure components that can be described separately,
and both components are universal in normalized stretched
coordinates. The universal shape in the vertical is not per-
ceptible until the coordinate is stretched with the factor N/f,
demonstrating the key role of the Earth’s rotation and ocean
stratification in causing regional differences of eddies’ struc-
tures. It should be noted that in this new coordinate, different
depth ranges of the ocean are disproportionally “stretched”
depending on their stratification. Consequently, signals get
emphasized as seen under a magnifier in the main thermo-
cline where stratification is strong, but those in the surface
mixed layer and in the vast expanse of the deep ocean with
very weak stratification are compressed.

[10] There are two assumptions considered in this study,
the first one is hydrostatic balance, used in calculation
of pressure from density profile, and the second one is
geostrophic balance, which is applied in detection of eddies
with the Okubo-Weiss method and is not indispensable for
our analysis. For example, if the SSH-based method is used
to detect eddies, as in Chelton et al. [2011], there is no need
to assume geostrophic balance. Therefore, other than the
hydrostatic balance, both the composite analysis and the uni-
versal eddy structure are based solely on observations, free
of any dynamical assumptions.

[11] Unraveling the three-dimensional structure of eddies
in the ocean is a grand challenge. As the first attempt to
investigate mesoscale eddies at the global scale, the current
study takes full advantage of the two global measurements.
It is focused on identifying the global universal structure at
the lowest order by exploring similarities rather than empha-
sizing differences over different regions. Such a universal
structure may provide a useful tool in examining the role of
eddies in the oceanic circulation and climate. Further study
in refining this structure is expected, and the refined struc-
ture can serve as a benchmark for numerical models where
mesoscale eddies are explicitly resolved. In addition, the
generation mechanism for this universal structure remains
unknown; thus, exploring such mechanism may bring new
excitement to eddy research.

Appendix: Methods

A1. Computing the Pressure Profile From a Given
T/S Profile

[12] Potential density, �� , referenced to the sea surface is
directly computed from the T/S profile. Integrating upward
the equation of the hydrostatic balance from a given refer-
ence level (here 2000 m depth is chosen for convenience)
leads to

p(x, y, z, t) = –
Z z

–2,000
g�� (x, y, z0, t)dz0 + C, (A1)

where g is the gravitational acceleration and C is the pressure
at 2000 m depth. It should be noted that choosing a different
reference level will change the value of C but will not affect
eddy structures resulting from composite analysis.

A2. Computing Pressure Anomalies at Different
Depths on the Path of a Given Argo Float

[13] On the drifting path of the Argo float, we have a
series of p(x, y, z, t) at different depths (z < 0) inferred
from float data and a series of surface pressure, p(x, y, 0, t),
computed from altimetry:

p(x, y, 0, t) = g�0SSH, (A2)

where �0 in equation (A2) is the density at the surface, set to
the background mean density 1030 kg m–3. Using the stan-
dardization method for time series, including removal of the
mean value and normalization with standard deviation, we
get the standardized pressure signals, psd(x, y, z, t), at and
below the surface, as plotted in Figure 1.

A3. Constructing a Three-Dimensional Pressure
Field in a Subdomain With the Radius of 15ı

[14] We divide the entire globe into 5ı�5ı grid cells, each
of which is the center of a subdomain, a circular area with
the radius of 15ı. This circular area is thought to be qualified
for the regional composite analysis if it contains more than
5000 Argo float profiles.

[15] Step 1: Data preparation. Having obtained the pres-
sure signals for all T/S profiles, we take their multiyear
seasonal average and regard it as a “climatology”, which
is subtracted from the original signal to give the pressure
anomalies p0 for the globe.

[16] Step 2: Eddy detection. We first search, within the
subdomain, for local maximum (minimum) of SLA as cen-
ters of possible anticyclones (cyclones). To further deter-
mine whether these eddies are real, we make use of the
Okubo-Weiss criterion [Isern-Fontanet et al., 2003]: an eddy
is confirmed if its center is embedded within a closed
contour of the Okubo-Weiss parameter W = –2 � 10–12s–2.
This parameter is a measure of the relative importance of
rotation and deformation in fluid flow, defined as

W = 4
�
u2

x + vxuy
�

(A3)

for flow without horizontal divergence as in geostrophic bal-
ance, where velocity components are computed from SLA
by geostrophic relation:

u = –gf–1 @(SLA)
@y

,

v = gf–1 @(SLA)
@x

. (A4)

The area, A, enclosed by this particular W contour sets the
scale of the eddy by R0 =

p
A/� . The strength of the eddy

is defined by the surface pressure anomaly at the eddy cen-
ter, P0 = g�0(SLA)center. To avoid contamination of nearby
eddies of opposite polarity, we excluded eddies that have
centers of other eddies appear within the normalized radial
distance 3.

[17] Step 3: Composite analysis. Then, each pressure
anomaly profile, p0, in the subdomain is matched with
the closest surface-detected eddy occurring at the same
time (considered as “simultaneous” since the maximum dif-
ference of occurring time between the Argo profile and
the “closest” eddy detected on the atlimetric map is less
than 3.5 days, short compared with the typical life span of
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mesoscale eddies). Normalizing p0 with the eddy strength P0
and its radial coordinate with the eddy scale R0, we have

pn(rn, z, t) = p0(r/R0, z, t)/P0. (A5)

Assuming eddies within this local area have the same struc-
ture regardless of strength or scale, we thus construct a single
field of pressure anomaly pn(rn, z) for a given area. Repeat-
ing steps 2 and 3 leads to multiple pn(rn, z) that share a
universal structure in the normalized stretched coordinates.
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